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_ma-discuss%the almost periodicity of bounded solutions of

the integrodifferential equation

x' + p* x=f,
™ lren
Here x and f mdp R into qﬁ, the prime denotes
differentiation, ﬁ is an n by n matrix valued finite measure
on R, and f 1is either an almost periodic distribution, or an
almost periodic function in the sense 3£_§33f! Stephanoff, Weyl or
Besicovitch. In the first three cases we givesa simple sufficient
condition (countability of the set where the characteristic
function of the kernel is not invertible) for bounded solutions to
be almost periodic.}_This condition is no longer sufficient in the
!

last two cases, as we~shoerith a simple counterexample.
v~
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SIGNIFICANCE AND EXPLANATION

! : This paper discusses linear systems of equations of the form

[+ -]

, (*) Sox(6) + [ [u(s))x(t=s) = £(£), —» < £ < .

Typical examples of such equations are ordinary differential
equations, differential delay equations, retarded functional
differential equations, and integrodifferential equations. Our
main objective consists of finding conditions which imply that all
bounded solutions are almost periodic, i.e. they can be approximated
by sums of periodic functions. It is shown that in most cases
bounded solutions of (*) are almost periodic, provided one uses a

sufficiently strong notion of almost periodicity.
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ON THE ALMOST PERIODICITY OF THE SOLUTIONS OF AN
INTEGRODIFFERENTIAL EQUATION

Olof J. Staffans

l. Introduction

In this paper we study the integrodifferential egquation

(L.1)  x' + pu+*x=f.

Here x and f are defined on R and take column vector values

in Cn, # is an n by n matrix valued finite measure on R, and
the equation is supposed to hold in the distribution sense (the
prime stands for differentiation). More specifically, we ask the
following question: If f is almost periodic in some sense, then
is it in general true that every bounded distribution solution x

of (1l.1) is also almost periodic in the same sense, or possibly in

some other sense?

The main purpose of this paper is to present sufficient
conditions which imply that bounded solutions are almost periodic.
We essentially restrict ourselves to four notions of almost
periodicity, namely almost periodicity in the distribution sense, in
the Bohr and Stephanoff sense, and almost periodicity with an
absolutely convergent Fourier series. In particular, we exclude the
Weyl and Besicovitch classes of almost periodic functions. There is
a very good reason for doing so; we show with a counterexample that

our main result cannot be extended to these two function classes.

Sponsored by the United States Army under Contract No. DAAG29-80-C-
0041.
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The main theorems are presented in Section 2. First a
! necessary condition is given for (1.1) to have almost periodic
solutions, and then sufficient conditions are discussed which imply
that all bounded solutions of (1.1) are almost periodic in one sense :
or another. The counterexample which we mentioned above is also

stated here.

Section 3 contains a discussion on almost periodic

distributions and Bohr almost periodic functions as well as a number

-

of preliminary lemmas. Proofs of theorems related to distribution
and Bohr almost periodicity are given in Section 4. Section 5
starts with a short discussion of Stephanoff almost periodicity, and
continues with proof of a theorem which applies when £ in (l.1) is
- Stephanoff almost periodic. Finally, in Section 6 we define Weyl

!3 | and Besicovitch almost periodicity, and show that our main result

£ cannot be extended to these two function spaces.
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~ the equation (1.1) to have an almost periodic distribution solution.

2. Statement of results

The question which we want to discuss is the following: When

is it true that all bounded solutions of (1.1) are almost periodic?

A natural way of beginning the discussion is to first check
what the necessary conditions are which have to be satisfied for
(1.1) to have an almost periodic soluton. One straightforward

result in this direction is the following:

Theorem l. Let x be an almost periodic cP-valued distribution,

let p be a finite n by n matrix valued measue on R, and 4

define f by (1.1). Then f is an almost periodic distribution.
iw t
Moreover, the Fourier series Zk:i b.e k of f satisfies

® imkt
(2.1) ] be = kzl D(w, )a.e '

o iwkt
where [ =) ae is the Fourier series of x,

(2.2) D(w) = iwl + f(w), w € R,

1 is the identity matrix, and fi(w) = [ RELTITSP
R

Clearly, Theorem 1.1 gives us a necessary condition on f for

First of all, f has to be an almost periodic distribution.
Moreover, the Fourier series Zkrl bkeiwkt of f cannot be t
completely arbitrary, but it has to be of the form (2.1). 1In

particular, if D(mk) is not invertible for some Wy r then the

requirement that bk should belong to the range of D(“k)

-3-




t restricts bk to a proper subspace of c. For example, in the

scalar case bk has to vanish whenever D(mk) vanishes.

.
[ S

Suppose that £ is an almost periodic distribution, and that
iw t
the coefficients b, in its Fourier series zk:l be k belong to

i the range of D(wk) for all k. 1In general it is still true that
there may exist unbounded distribution solutions which satisfy (1l.1)

: in some sense, and these cannot possibly be almost periodic, because
every almost periodic distribution is bounded in the distribution
sense. However, let us suppose that x is bounded. 1Is it then
automatically true that x is almost periodic? The answer to this

question dependes on the size of the set 2 defined by
(2.3) 2={weR | D(w is not invertible }.

‘ If Z 1is uncountable, then, at least in the scalar case, one can
always construct a smooth bounded solution x to the equation
x' + u* x =0 which is not almost periodic (see (8, pp. 300 -
301]). This implies that although (l.1) may have almost periodic

solutions, it also has solutions which are not almost periodic (or

it has no solutions whatsoever). On the other hand, if 2Z is

countable, then all bounded solutions are almost periodic:

Define D and 2 by (2.2) and (2.3), and suppose that 2 is

countable. Let f be an almost periodic distribution. Then every

bounded distribution solution x of (l1.1) is an almost periodic

distribution. .

i Observe that no claim is made about the existence of a bounded

; solution.

j Theorem 2. Let u be a finite n by n matrix valued measure,
|
v
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Our proof of Theorem 2 is based on a reduction to the following
result, which has been essentially known for approximately twenty

‘years (cf. [5] and [9]): If the set 2 is countable, and if f |is

almost periodic in the sense of Bohr, then every bounded solution

% x of (1.1) is also almost periodic in the same sense. As a matter

of fact, this result is true even in a slightly stronger form:

Theorem 3. Let Y be of the same type as in Theorem 2, with 2

countable, and let f be almost periodic in the sense of Stephanoff.

Then every bounded distribution solution x of (l1.1) is almost

periodic in the sense of Bohr.

In other words, the solution x of (l1.1) has better smoothness

properties than the input function £,

Another class of almost periodic functions is the class of
iw t
functions x of the form x(t) = zkzl a, e K", teR, where

zk:1 la,| < . We call functions x of this type almost periodic
with an absolutely convergent Fourier series, or simply "absclutely
convergent almost periodic”". Clearly, by Theorem 1, if one wants a
solution x of (1.1) to be an absolutely convergent aI@ost periodic
function, then necessarily the Fourier series Ek:l bkelwkt of f

must satisfy

(2.4) T [DTHw )b, | < =

k=

wkﬂz

One can show with simple counterexamples that if 2Z 1is infinite,
then this condition is not in general sufficient for all bounded
solutjons of (1.1) to be absolutely convergent almost periodic.

However, if 2 1is finite, then it is so:

-5-




Theorem 4. Let u be a finite n by n matrix valued measure on

R, define D and 2 by (2.2) and (2.3), and suppose that 2 is

finite. Let f be an almost periodic distribution with a

iw t
Fourier series Ekzi b.e k satisfying (2.4). Then every bounded

distribution solution x of (1.1) is an absolutely convergent

almost periodic function.

So far we have throughout assumed that £ in (1.1) is an
almost periodic distribution. There exist Weyl and Besicovitch
almost periodic functions which are not almost periodic in the
distribution sense, and the question arises whether Theorem 2 is
also true for these two classes of almost periodic functions. The
answer is "no", as the following counterexample shows (to improve
the readability we use a rather imprecise formulation; a more exact

formulation is given in Section 5):

Theorem 5. Let £ be a continuous function with compact support,

and suppose that f f(t)dt # 0. Then f is Weyl almost periodic

R

t
and its integral f f(s)ds 1is a bounded uniformly continuous
- 00

function, which is not almost periodic even in the sense of

Besicovitch.

Every Weyl almost periodic function is Besicovitch almost
periodic, and therefore Theorem 5 provides a counterexample to
Theorem 2 with the class of almost periodic distributions replaced
by the classes of Weyl and Besicovitch almost periodic functions

{taking ¥ Z 0 we get D(w) = jwI; this function is invertible for

every w # 0).
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3. Almost Periodic Distributions and

Bohr Almost Periodic Functions

To shorten the presentation, let us introduce some notations.
We let B(R:cn) denote the space of Schwartz bounded c"-valued
distributions on R, and AP(R;C") the space of Schwartz almost
periodic distributions. A reader unfamiliar with these two concepts
may consult e.g. Schwartz”s book [10] (which uses a different
notation). The space of bounded, uniformly continuous c"-valued
functions on R is denoted BUC(R:Cn), and BAP(R;C“) stands for

the set of Bohr almost periodic functions.

We denote the set of finite n by n matrix valued measures
on R by M(R;C™™). 1f u € M(R;C"™") and either £ € B(R;C™)
or f € BUC(R;C"), then the convolution y % £ is well defined,
and it belongs to the same space as f (see [10, p. 203] for the

distribution case).

Our proofs of statements concerning distributions in B(R;C")
and AP(R;C“) are based on a reduction to the corresponding
statements concerning functions which belong to BUC(R;C") and to
BAP (R;C™), respectively. One gets from the former case to the
latter by convolving the distributions with a sufficiently smooth
function. Define

e t, t>o,
(3.1) e(t) =

0, t < 0.

1

Then e 1is a L -function whose Fourier transform




(3.2) &) = (1 + iv)~Y, w e R f

vanishes nowhere. We denote the m-fold convolution of e with

itself by e™, m > 1. Explicitly,

m-1
T%:ITT e t, t >0,
™ (t) =
!
0, t <0,
and the Fourier transform (em*)‘ of em* is (e'*,'(w) = [é(w)lm
m O

= (1 + iw) ", w € R. We define e to be equal to §, the unit

point mass at zero. For each m > 0, the convolution operator

which takes x into e™ « x maps B(R;Cn) bicontinuously onto

itself. Its inverse is the operator (1 + é%)m.

Lemma 3.1. Let x € B(R;C"). Then there exists an integer m > 0

such that em* * X € BUC(R;C"). Moreover, x € AP(R;C“) if and

only if e™ « x € BAP(R;C") for some integer m > 0.

This lemma can be deduced e.g. from [10, (VI,8;6), pp. 205 and

207] (Schwartz uses the kernel e_ltl, t € R, instead of our

kernel e, but the argument remains the same).

One can define the Fourier series of a function x € AP(R;C“)

in the following way. By Lemma 3.1, e™ » x € BAP(R;C"), and it
iw t
has a Fourier series zk:I be K™ in the sense of Bohr. We define
iw t
the Fourier series of a to be Xk:I (1 + iw )" bee K™, That this

definition is independent of the particular value of m which was

chosen follows from the following well known result, and from (3.2):




Lemma 3.2. Let yu € M(R;Cnxn), and let x € BAP(R;C") have the

iw, t

Fourier series Ekzl a e . Then u * x € BAP(R;C™, and the
iw, t

Fourier series of u *» x is zkrl ﬁ(mk)ake k , where {1 1is the

Fourier transform of .

Let us introduce one more notation. When we write x =
Zk:l akelmkt € AP(R;C"), we mean that x is an almost periodic
distribution with Fourier series zkzl akelmkt. With this notation,
the following corollary to Lemmas 3.1 and 3.2 can be written in a

very compact form:

nxn © iwkt
Lemma 3.3. Let yu € M(R;C ), and let x = Zk=l a e €
iw, t
AP(R;C"). Then u * x € AP(R;C"), and y * x = Ekzl f(w,)age k-,

where Qi is the Fourier transform of .

: . * *
This is true, because €™ = p* X =y & e™ » x, and Lemmas

3.1 and 3.2 can be applied.

In our proofs of Theorems 1 - 4 it is convenient to rewrite

(1.1) in a form which does not involve a differentiation:

Lemma 3.4. Let yu € M(R;C™™), Then x € B(R;C™) is a solution of

(1.1) if and only if it satisfies

(3.3) X+ a*xx=ex* f,

where e is the function defined in (3.1), and

(3.4) a=ex* y - el,

Proof. If x € B(R;C") satisfies (1.1), then (1.1) implies £ €

B(R;Cn). Convolving (1.1) with e 1in the distribution sense we get

-9-
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e* x'+ery*rxm=exrf,

or equivalently

e' * x+e*y*x=exf,

As e' = § - e, we get (3.3), (3.4).

Conversely, let x € B(R;C") satisfy (3.4). Differentiate
(3.4) to get

X' +a'*x=¢e' * f=f e f,

Now

a' =¢e'* pyp-e'lI=y-e»rm-¢8I +el=y -~ 61 - a,

so we get

X' +uy*x-x-arx=f-enxnrf,

Adding (3.3) to this equation we get (1.1). B

-10-
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Proof of Theorem 1. Let x = zk:I a.e

4. Proofs of Theorems 1, 2 and 4

After the preliminary considerations in Section 3 the proof of

Theorem 1 is very easy:

iwkt n
€ AP(R;C') be a solution

of (1.1). Then, by Lemma 3.4, it satisfies (3.3). By (3.3) and

Lemma 3.3, e x f € AP(R;C"), and
iw, t
e x f = Zk:H (I + a)"(w )a.e k™,
We know that f € B(R:Cn) (see [10, Theorem XXVI, p. 203}). It

follows from Lemma 3.1 that f € AP(R;C"), and by Lemma 3.2

o - iw, t
ooy [ 017 81 + )% (w)ae © .

rh
R

1+ in) Y, weRr, and

Now @& (w)

(4.1) (81 + a)*(w) = I + &(w)(f(w) ~ I) = (1 + iw) Y D(w), w € R,

so we end up with the given identity (2.1). B

The proof of Theorem 2 is a simple reduction to the uniformly

continuous case:

Proof of Theorem 2. Let x € B(R;C") satisfy (1.1), and let f €

AP (R;C"). By Lemma 2.4, f satisfies (3.3).

sufficiently large integer, then e™ + x e BUC(R;C"), and
m#* satisfies

e{™1)* , ¢ ¢ BAP(R;C"). Moreover, y = e™ « x

If m is a




—— - e ——

where g = e(m+l)* * f. By Lemma 3.1, x € AP(R;C") if (and only
if) y e BAP(R;C“). In other words, it suffices to show that if g
€ BAP(R;C"), then every solution y € BUC(R;C") of (4.2) belongs
to BAP(R;C"). In the scalar case it follows e.g. from [1l1,
Proposition 4.3] that this is indeed the case, because by (4.l1), the
Fourier transform of the kernel in (3.2) is invertible in all
points w @ 2, and 2 was assumed to be countable. The matrix

{ case is not considered in [11], but the proof given in [l11l] remains
unchanged in the matrix case. This means that [11, Proposition 4.3]

is valid also in the matrix case, and the proof is complete. §

In the proof of Theorem 4 we use the following fact, which is
an immediate consequence of Theorem 1l: The Fourier series of an

almost periodic distribution solution x of (1.1) must be of the

form
; © - iw t ix t
4.3) I plwobe X+ § ae £,
k=1 Akez
f wk¢Z
i ® iwkt
F where X bke is the Fourier series of ¢, a, belongs to the
k=1
null space of D(Xk) if Ak is not a characteristic exponent of
i f, and a, is one of the infinitely many solutions to the
h . equation D(xk)ak = bj' if kk = wj is a characteristic exponent
’I L
? k of £ (if this equation has no solution and Z 1is countable, then

by Theorems 1 and 2, (1.1) has no bounded distribution solution).

Proof of Theorem 4. By Theorem 2, we know that x in Theorem 4

belongs to AP(R;C"). It follows from Theorem 1, (2.4), (4.3), and
iw, t
the fact that 2 is finite that the Fouries series [ 7, a.e k

of x is absolutely convergent. The function y(t) defined by

o o t n
; y(t) = stl ae , t €R, belongs to BAP(R;C"), and it has the

-12-




same Fourier series as %. The Fourier series of an almost periodic

jon determines it uniquely {10,
and this is exact

p. 208}, so in the

distribut
1y what Theorem 4

distribution sense, X = Y

claims. B
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5 5. Proof of Theorem 3

Before proving Theorem 3, let us give a very short description

of the space of Stepahoff almost periodic functions. Given p, 1 <

. p < ®, we define the "Stephanoff” class of "bounded" function
g SP(R;Cn) to consist of those locally integrable functions £ whose

Stephanoff seminorm

t+1
€] _=sup{ | |f(s)|Pas }}P < =
sP  ter t

is finite. We have |f| p2 I£]l , for every p>1 [2, p. 72), sO
in particular, Sp(R;cn)SC:Sl(R;gn) for every p > l. The
Stephanoff almost periodic functions SAPP(R:cn) of order p, 1 <
P < ®», can be defined in many different equivalent ways. The
simplest definition is probably the one which says that sapP(r;c")

is the closure in SP(R;Cn) of BAP(R;C“). It is clear from this

definition, and from the norm inequality given above, that

| sapP (r;c") c sapl(Rr;c") for every p > 1.

} In this work we shall really only need one elementary fact

| ' about SAPP(R;cn), namely the following one:

‘ Lemma 5.1. Let 1 <p <= let f € sapP(R;c"), and define e as
<} in (3.1). Then e * f € BAP(R;C").
|

Proof. As SAPP(R;c™ c sapl(R;c"), it suffices to prove the
lemma when p = 1. By the definition of SAPI(R;Cn), there is a

9 | sequence of functions g9, © BAP (R;C") converging to £ in
Sl(R;cn). We know from Lemma 3.2 that e « 95 e BAP(R:C“) for all

‘ : n. The straightforward computation

~14-




t

le » £(t) - e » g (&)} = | J e~ [£(t-s) - g (t-s)] ds |
0

< 1 e J [E(t-s) - gn(t—s)l ds
k=0 k
x
-k
< z e lf -4 ' ’
k=0 n Sl

shows that e =* g, converges to e » £ uniformly. This means

that e * £ € BAP(R;C") [3, Theorem V, p. 38]. B

Clearly, Lemmas 3.4 and 5.1 reduce Theorem 3 to a special case
of the following theorem:

nxn
)

Theorem 6. Let a € Ll(R;C » and suppose that the set where

I - 8(w) is not invertible is countable. Let f € BAP(R;C"). Then

every bounded distribution solutjon x of

(5.1) X+ a»xx=f

is Bohr almost periodic.

The problem can be even further simplified: We know already
that if x € BUC(R;C") satisfies (5.1), and the other assumptions
of Theorem 5 hold, then x € BAP(R;C") (cf. the proof of Theorem

2). Thus, it suffices to prove the following lemma:

Lemma 5.2. Let a € LI(R;¢™P), £ € BUC(R;C"), and let x €
B(R;C") satisfy (5.1). Then x € BUC(R;C").

Proof. By the Riemann-Lebesgue lemma, &(w) + 0 as w <+ t®, SO0 we
can find a number f such that I - &(w) is invertible for |w]| >

Q. By Wiener”s Tauberian theorem, we can find a function b €

nxn

Ll(n;c ) satisfying

T




JER O T

e i

(5.2) [I + b(w)J[I + a(w)] =1, Juw| > 8.

Let n be a scalar Ll-function whose Fourier transform % has
compact support, and which satisfies fi(w) =1 for |Jw| <8 + 1,
and let S be the unit point mass at zero. Convolve (5.1) with

§ - n to get
(5.3) (I8 + a) » (x - N #*x) =f~-nx £,

The distribution Fourier transform of x - N * x vanishes on

(2-1,8+1), so by (5.2),

(IS + b) » (IS + a) * (X - N % X) =X -1 * X,
Therefore, if we convolve (5.3) with I8 + b we get
(5.4) X-N#»x*rx=f-nNn=»xf+bxrf~-b=+*rnaxr £,
As f e BUC(R;C"), the right hand side of (5.4) also belongs to
BUC(R;C"), and sO X - N % x € BUC(R;C"). The Fourier transform
of n * x has compact support, and therefore n * x € BUC(R;Cn).

This means that x itself belongs to BUC(R;C"), and the proof is

complete. §

-16-
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6. A Counterexample

In the same way as one defines SAPP(R;Cn) to be the closure
of BAP(R;C") in Sp(R;Cn), one can define two more classes of
almost periodic functions, i.e. the Weyl and Besicovitch classes, to
be the closures of BAP(R;C") in the "Weyl" and "Besicovitch"
spaces. For each p, 1 < p < ®, we define Wp(R;Cn) and
Bp(R;cn) to be the set of locally integrable functions f whose

Weyl seminorm

' t+2
I£] . = lim sup { % J |£(s) |Pas }l/p'
WP+ teR t

respectively Besicovitch seminorm

. 1 P 1/p
le] = { 1im sup L J |£(s)|Pas )
Bp t-;c t -t

is finite. Again, |f|wp > £l , and 1£1 p2 'flal for all p >
1 (2, p. 73], so WP(R;c") c wl(r;c™ ana BP(R;c™) c B(r;c").
For each fixed p, we have Sp(R;Cn) CZWP(R;Cn) C:BP(R;cn). The
Weyl almost periodic functions WAPP(R;C") and Besicovitch almost
periodic functions BAPP(R;Cn) can be characterized by the fact
that they are the closures of BUC(R;C“) in wp(R;Cn) and
Bp(R;cn), respectively. Clearly, this means that SAPp(chn)tz
waPP (R;c")  BAPP(R;c"), and that waPP(R;c") c wapl(R;c") and
BaPP(R;c") C BAPL(R;C™) for all p > 1.

With the new notations we can rewrite Theorem 5 into the

following, slightly more general form:




Theorem 5°. Let 1 < p < ®, and let f € LP(R;Cc") have compact

support and satisfy f f(s)ds ¥ 0. Then f € wapp(n;c“), but its
R

t
integral [ f(s)ds does not belong to BAPP(R;C").

The first claim in Theorem 5° is obvious, because trivially,

if £ e LP(rR;c"), then |f} o =0, so fe waPP(R;C"). The second
W

claim is a consequence of the following fact:

Lemma 6.1. Let f be continuous on R with walues in c“, let

the limits £(-~) and f(») exist, and suppose that £(-x=) ¥ f(=).
Then f ¢ BaPP(Rr;C™).

Proof. As BAPP(R;cn) C:BAPI(R;Cn) for every p > 1, it suffices

to consider the case p = 1.

Suppose that f € BAPl(R;C“). In this case Lemma 4 in [2,

p.93] shows that f has a mean value

t
M(f) = lim 5v [ £(s)ds.
tro 2% _¢

An obvious modification of Besicovitch’s proof shows that not only

does f have a mean value M(f), it actually has both a left mean

value
- 1 ¢
M (f) = lim £ | £(s)as
t+¢ —t

and a right mean value

1 t

MY (f) = lim 3 [ £(s)as.
teo 0




o -m“‘

Moreover, the two mean values are equal (use the fact that all

functions in BAP(R;C“) have this property; see [3, p. 44)).
Clearly, the left and right mean values of £ in Lemma 6.1 exist,
but they are not equal, and so f ¢ BAPI(R;Cn). |

LT S S 5
N ;




r (_ — _ . n-u-uu-----........._..“...__,,__,___.'-.__...-.__________..‘

References

1. L. Amerio and G. Prouse, Almost-Periodic Functions and
Functional Equations, Van Nostrand Reinhold, New York, 1971.

2. A. S. Besicovitch, Almost Periodic Functions, Cambridge
University Press, Cambridge, 1932.

3. H. Bohr, Almost Periodic Functions, Chelsea, New York, 1947.

4. C. Corduneanu, Almost Periodic Functions, Interscience, New
York, 1968.

5. R. Doss, On the almost periodic solutions of a class of
integro~differential equations, Ann. of Math. (2) 81 (1965),
117 ~ 123.

6. A. M. Fink, Almost Periodic Differential Equations, Springer,
Berlin, 1974.

7. Y. Katznelson, An Introduction to Harmonic Analysis, Dover, New
York, 1976.

f

’ 8. J. J. Levin and D. F. Shea, On the asymptotic behavior of the

r bounded solutions of some integral equations. I - III, J. Math.
Anal. Appl. 37 (1972), 42 - 82; 288 ~ 326; 537 - 575.

;.L : 9. L. H. Loomis, The spectral characterization of a class of
j ) almost periodic functions, Ann. of Math (2) 72 (1960), 362 -
368.

10. L. Schwartz, Théorie des distributions, Nouvelle &d., Hermann,
Paris, 1966.

-t

1l1. 0. J. staffans, On asymptotically almost periodic solutions of
a convolution equation, Trans. Amer. Math. Soc. 266 (1981), 603
- 616-

03S/jvs

—— e

-20~




| ——————— - s+

et —

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

176, ISTRIBUTION STATEMENT (of thia Report)

REPORT DOCUMENTATION PAGE BEF O RN
|. IE:OR? NUHIEI 2. GOVT ACCESSION NO.| 3. RECIPIENT’S CATALOG NUMBER
#2642 D A3IS 32
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Summary Report - no specific
reporting period

6. PERFORMING ORG. REPORT NUMBER

On the Almost Periodicity of the Solutions
of an Integrodifferential Equation

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(a)
Olof J. Staffans DAAG29-80-C-0041
9. PERFORMING ORGANIZATION NAME AND ADDRESS 0. PROGRAM ELEMENT, PROJECT, TASK
Mathematics Research Center, University of Work Unit Nunber 1o
610 Walnut Street Wisconsin Applied Analysis
Madison, Wisconsin 53706

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATES

U. S. Army Research Office February 1984

P.O. Box 12211 15. NUMBER OF PAGES
Research Triangle Park, North Carolina 27709 20

. MONITORING AGENCY NAME & ADDRESS(!{ different from Controlling Office) 18. SECURITY CLASS. (of thie report)
UNCLASSIFIED

182 DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract enteced in Block 20, il different from Report)

18. SUPPLEMENTARY NOTES

re

19. KEY WORDS (Continue on revecse slde il y and |, ify by block )

Almost periodic, convolution equation, integrodifferential equation

ry

20. ABSTRACT (Continue on reverse side if y and identify by block %)
We discuss the almost periodicity of bounded solutions of the integro-
differential equation

x' +u *xaf

Here x and f map IR into c“, the prime denotes differentiation, u is
an n by n matrix valued finite measure on IR, and f is either an almost
periodic distribution, or an almost periodic function in the sense of Bohr,
Stephanoff, Weyl or Besicovitch. 1In the first three cases we giv. a simple

DD , 3%, 1473 zoimion oF 1 wov 8 18 OssOLETE UNCLASSIFIED ¢ ‘atinued)

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

e 4t i 2




ABSTRACT (continued)

sufficient condition (countability of the set where the characteristic function
of the kernel is not invertible) for bounded solutions to be almost periodic.
This condition is no longer sufficieu: in the last two cases, as we show with a
simple counterexample.




